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[1]Observation of a non-Hermitian phase transition in an optical quantum gas
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HARTEE.: Science 02 Apr 2021:Vol. 372, Issue 6537, pp. 88-91

{3 : Fahri Emre Oztiirk, Tim Lappe, Goran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, et al.

F—1EHBAL: Institut fiir Angewandte Physik, Universitit Bonn, Wegelerstr. 8, 53115 Bonn, Germany.

S C8ERE: https:/science.sciencemag.org/content/372/6537/88

Abstract: Quantum gases of light, such as photon or polariton condensates in optical microcavities, are
collective quantum systems enabling a tailoring of dissipation from, for example, cavity loss. This characteristic
makes them a tool to study dissipative phases, an emerging subject in quantum many-body physics. We
experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a dissipative
phase characterized by a biexponential decay of the condensate’ s second-order coherence. The phase transition
occurs because of the emergence of an exceptional point in the quantum gas. Although Bose-Einstein condensation

is usually connected to lasing by a smooth crossover, the observed phase transition separates the biexponential
phase from both lasing and an intermediate, oscillatory condensate regime. Our approach can be used to study a
wide class of dissipative quantum phases in topological or lattice systems.
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[2]Nonlinear tuning of PT symmetry and non-Hermitian topological states
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e Shiqi Xia, Dimitrios Kaltsas, Daohong Song, loannis Komis, Jingjun Xu, Alexander Szameit, et al.
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Abstract: Topology, parity-time (PT) symmetry, and nonlinearity are at the origin of many fundamental phenomena

in complex systems across the natural sciences, but their mutual interplay remains unexplored. We established a nonlinear
non-Hermitian topological platform for active tuning of PT symmetry and topological states. We found that the loss in a
topological defect potential in a non-Hermitian photonic lattice can be tuned solely by nonlinearity, enabling the transition
between PT-symmetric and non—PT-symmetric regimes and the maneuvering of topological zero modes. The interaction
between two apparently antagonistic effects is revealed: the sensitivity close to exceptional points and the robustness of
non-Hermitian topological states. Our scheme using single-channel control of global PT symmetry and topology via local
nonlinearity may provide opportunities for unconventional light manipulation and device applications.
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Fig. 2. Calculated non-Hermitian topological interface states tuned by nonfinearity. (A) lllustration of
an active PT-symmetric SSH with an interface topological defect located at site n = 0. Colored dots represent
different lattice sites. (B) i \ for a finite lattice with 33 sites Rcd ::--_‘Icz and
blug dots denote real and i envalues, respectively; shaded regio I
structure of an infinite lattice. Rm“ The corresponding eigenmode here the eigeny i
A to E are obtained with propagation constants py = 0, 2, -2, 2 while ke ﬂpngﬁ for all other
waveguides unchanged. Color codes for different .va-.-{-gmdes are the same as in F

NNH-S3H examined by a broad plane-wave beam. {E) Piot of intensity tra
le ction of the gap ratio in a single waveguide obtained from simulation. Insets show side Y
portion taken from the expenment in (C) at mT =0 (red), 0.40 (green), and 0.56 (blue), where in each ing Ltas ingh
writing beam is shown 2t the top and the guided cutput probe beam at the bottom.
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[3]Enhanced x-ray emission coinciding with giant radio pulses from the Crab Pulsar
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fE#: Teruaki Enoto, Toshio Terasawa, Shota Kisaka, Shuta J. Tanaka, etc.

FE—1EFE BN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan.

SR https:/science.sciencemag.org/content/372/6538/187

Abstract: Pulsars are spinning, magnetized neutron stars that are observed as a regular sequence of radio pulses.

Most pulses are of consistent intensity, but occasionally one is brighter by orders of magnitude. The cause of these
unpredictable giant radio pulses (GRPs) is unknown. Enoto et al. observed the Crab Pulsar simultaneously with x-ray
and radio telescopes. They found that x-ray emission during GRPs was slightly brighter than that during normal pulses.
Comparing the radio and x-ray enhancements provides constraints on the GRP emission mechanism and the possible
connections with other transient radio phenomena.
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[4]Gate-controlled BCS-BEC crossover in a two-dimensional superconductor
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HAR1E B.: Science 09 Apr 2021:Vol. 372, Issue 6538, pp. 190-195

(= Yuji Nakagawa, Yuichi Kas

ahara, Takuya Nomoto, Ryotaro Arita, Tsutomu Nojima, Yoshihiro Iwasa

F—EEHNL: Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656,

Japan.

R https://science.sciencemag.org/content/372/6538/190
Abstract: In conventional superconductors, the electron pairs responsible for superconductivity are large and

overlapping. Starting from this so-called Bardeen-Cooper-Schrieffer (BCS) limit, increasing interactions can set the system

on a path of crossover to the opposite lim

it of small, tightly bound electron pairs that undergo Bose-Einstein condensation

(BEC). Nakagawa et al. intercalated lithium ions into the insulating material zirconium nitride chloride, varying the carrier

density across a large range. This induced superconductivity and enabled the system to enter the crossover regime between

the BCS and BEC limits.
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Fig. 1. Gate-controlled intercalation in a ZrNCI device. (A) Side vew

aof Li.ZrNCI crystal structure. Solid Fines represent the rhombohedral unit cedl.
{B) Schematic illustration of the ionic-gating device based on a real optical
micrograph of a ZrNCH single-crystal flake and patterned ebectrodes. Narrow
contacts are prepared for the tunneling spectroscopy measurements. PMMA
covers the whole device except for the outer area of the flake and the gate
electrode. The electrolyte containing LICIO, is dropped onto the device. A gate

violtage Vy is applied to the electrolyte, and lithium cations and CI0y aniens move
oppositely. Lithium cations intercalate from the sides of the flake. {C) Source-
drain current los of the device in intercalation operation. During the forward
sweep of Vi (red), los increases steeply, whereas the change of fos is
gradual in the backward scan (blue). Vo s swept at a speed of 10 mV/s.
(D) Antisymmetrized transverse resistivity at 150 K for various values of the
Li content x. The linear slope is used to determine x.
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[5]Josephson junction infrared single-photon detector
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HAR{E B Science 23 Apr2021:Vol. 372, Issue 6540, pp. 409-412

fE# : Evan D. Walsh, Woochan Jung, Gil-Ho Lee, Dmitri K. Efetov, Bae-lan Wu, K.-F. Huang, et

HE—VEHBAL: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA.

ECHERE: https://science.sciencemag.org/content/372/6540/409

Abstract: Josephson junctions are superconducting devices used as high-sensitivity magnetometers and voltage
amplifiers as well as the basis of high-performance cryogenic computers and superconducting quantum computers.
Although device performance can be degraded by the generation of quasiparticles formed from broken Cooper pairs, this
phenomenon also opens opportunities to sensitively detect electromagnetic radiation. We demonstrate single near-infrared
photon detection by coupling photons to the localized surface plasmons of a graphene-based Josephson junction. Using the
photon-induced switching statistics of the current-biased device, we reveal the critical role of quasiparticles generated by
the absorbed photon in the detection mechanism. The photon sensitivity will enable a high-speed, low-power optical
interconnect for future superconducting computing architectures.
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[6]Higher-dimensional supersymmetric microlaser arrays
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fE#: Xingdu Qiao, Bikashkali Midya, Zihe Gao, Zhifeng Zhang, Haoqi Zhao, Tianwei Wu, et al.

E—VEH HAL: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA.

EHERE: https://science.sciencemag.org/content/372/6540/403

Abstract: The nonlinear scaling of complexity with the increased number of components in integrated photonics is a
major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry
formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature
phase-locked coherence and synchronization of all of the evanescently coupled microring lasers—collectively oscillating in
the fundamental transverse supermode—which enables high-radiance, small-divergence, and single-frequency laser emission
with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring
high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of
freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and
quantum regimes.
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[7]Realization of a multinode quantum network of remote solid-state qubits
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HARAE B Science 16 Apr 2021:Vol. 372, Issue 6539, pp. 259-264
f£# : M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, et al.
FE—FEHE AL QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands.

S https://science.sciencemag.org/content/372/6539/259

Abstract: The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally

new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine

remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented

with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward

gate operations across the network. We demonstrate two quantum network protocols without postselection: the distribution

of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node.

Our work establishes a key platform for exploring, testing, and developing multinode quantum network protocols and a

quantum network control stack.
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[8]Gapped magnetic ground state in quantum spin liquid candidate x -(BEDT-TTF)2Cu2(CN)3

BF B RBERELS « -(BEDT-TTF)2Cu2(CN)3 HIERRHES

HAR{E B Science 16 Apr 2021:Vol. 372, Issue 6539, pp. 276-279

fE#&: Bjorn Miksch, Andrej Pustogow, Mojtaba Javaheri Rahim, Andrey A. Bardin, et al.

$E—VE&E L. Physikalisches Institut, Universitit Stuttgart, 70569 Stuttgart, Germany.

ACEEE: https:/science.sciencemag.org/content/372/6539/276

Abstract: Geometrical frustration, quantum entanglement, and disorder may prevent long-range ordering of localized
spins with strong exchange interactions, resulting in an exotic state of matter. k -(BEDT-TTF)2Cu2(CN)3 is considered the
prime candidate for this elusive quantum spin liquid state, but its ground-state properties remain puzzling. We present a
multifrequency electron spin resonance (ESR) study down to millikelvin temperatures, revealing a rapid drop of the spin
susceptibility at 6 kelvin. This opening of a spin gap, accompanied by structural modifications, is consistent with the
formation of a valence bond solid ground state. We identify an impurity contribution to the ESR response that becomes
dominant when the intrinsic spins form singlets. Probing the electrons directly manifests the pivotal role of defects for the
low-energy properties of quantum spin systems without magnetic order.
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[1]Laser cooling of antihydrogen atoms
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HARAS B Nature volume 592, pages 35 - 42 (2021)

& : C.J.Baker, W. Bertsche

F—EEHNL: Department of Physics, College of Science, Swansea University, Swansea, UK

SR https:/www.nature.com/articles/s41586-021-03289-6

Abstract: The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum.

Here we demonstrate laser cooling of antihydrogen, the antimatter atom consisting of an antiproton and a positron. By
exciting the 1S - 2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman- a laser radiation, we
Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension,
the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions.
We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial
fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of
the laser-driven 1S - 28 transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is
approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its
immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample
of antihydrogen will drastically improve spectroscopic and gravitational studies of antihydrogen in ongoing
experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will
potentially provide ground-breaking opportunities for future experiments.
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[2]Stabilization of liquid instabilities with ionized gas jets
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HAR/E B Nature volume 592, pages 49 - 53 (2021)

fE#: Sanghoo Park, Wonho Choe, Hyungyu Lee, Joo Young Park, Jinwoo Kim, Se Youn Moon & Uro$ Cvelbar
F—1EHHAL: Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan, Republic of Korea
A3 https://www.nature.com/articles/s41586-021-03359-9

Abstract: Impinging gas jets can induce depressions in liquid surfaces, a phenomenon familiar to anyone who has

observed the cavity produced by blowing air through a straw directly above a cup of juice. Here we demonstrate the
stabilization of such instabilities by weakly ionized gas for the case of a gas jet impinging on water, based on
shadowgraph experiments and computational two-phase fluid and plasma modelling. We focus on the interfacial
dynamics relevant to electrohydrodynamic (EHD) gas flow, so-called electric wind, which is induced by the
momentum transfer from accelerated charged particles to neutral gas under an electric field. A weakly ionized gas jet
consisting of periodic pulsed ionization waves5, called plasma bullets, exerts more force via electrohydrodynamic flow
on the water surface than a neutral gas jet alone, resulting in cavity expansion without destabilization. Furthermore,
both the bidirectional electrohydrodynamic gas flow and electric field parallel to the gas — water interface produced by
plasma interacting ‘in the cavity’ render the surface more stable.
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Fig. 1| Cavity formation at water surfaces subjected to jet forces.

a, b, Shadowgraphimages presenting the depression of a free surface of
distilled water by a neutral helivm gas jet (a) and a weakly ionized helivm gasjet
{b) ata0.90-slpm gas flow rate (slpm, standard litres per minute). The plasma
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[3]Multistable inflatable origami structures at the metre scale
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Abstract: From stadium covers to solar sails, we rely on deployability for the design of large-scale structures
that can quickly compress to a fraction of their size. Here we draw inspiration from origami to design rigid-walled
deployable structures that are multistable and inflatable. Guided by geometric analyses and experiments, we create
a library of bistable origami shapes that can be deployed through a single fluidic pressure input. We then combine
these units to build functional structures at the metre scale, such as arches and emergency shelters, providing a
direct route for building large-scale inflatable systems that lock in place after deployment and offer a robust

enclosure through their stiff faces.
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[4]Non-reciprocal phase transitions
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Abstract: Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Although wave
propagation in non-reciprocal media has recently been closely studied, less is known about the consequences of
non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to
time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We
illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by
spectral singularities called exceptional points. We describe the emergence of these phases using insights from
bifurcation theory and non-Hermitian quantum mechanics. Our approach captures non-reciprocal generalizations
of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation.
Collective phenomena in these systems range from active time-(quasi) crystals to exceptional-point-enforced
pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in
systems whose dynamics is not governed by an optimization principle.
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[5]Subterahertz collective dynamics of polar vortices
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Abstract: The collective dynamics of topological structures are of interest from both fundamental and applied
perspectives. Topological structures constructed from electrical polarization, rather than electron spin, have
recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of
topological orders. However, little is known about the dynamics underlying the functionality of such complex
extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements,
we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude
higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices. A previously
unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale
circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is
considerably reduced at a critical strain, indicating a condensation of structural dynamics. We use
first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic
arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective
dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures
with ultrahigh speed and density.
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Fig.1] Fehe collective dy Fp andits L5 b =
experimental detection. a, Fourier spectra (blue) of calculated E i +
time-dependent response of polarvortices on THz-field excitation. The 510 f
spectrum of the THz pulse is shown asa broad pink background. The collective E‘ 0 [
modes of polarvortices (orange arrows) are shown as a separate setof modes 3 A A, { i
with respect to the known superlattice acoustic modes (black arrow) and the s ]
soft mode of PhTHD, at room temperature. The vortexon mode (V) shifts to 01 02 03 04 05 08
higher frequency (red peak: note that thisis not the calculated peak but a Frequancy Tz}

schematic peak to show the temperature dependence) as sample temperature

increases. b, Emergence and evolution of the vortexon (atomic displacement
vortices, purple circles) during its oscillation period r, overlaid with the static
polarization vortices (magenta circles). +and —, the signs of vartexon vorticity,
which reverse dynamically. Right. zoomed-in view of the region of the dashed
boxwith the calculated static polarization (magenta arrows) and lead- cation
displacement {purple arrows) ineach unit cell ofthe vortexonmode at £ = /4.
¢, Schematic of THz pump and X-ray-diffraction-probe experiment using an
X-ray free-electron laser (FEL). The coloured stripes on the (PETIO),/(STi0y),,
{PTO/STO)superiattice film represent in-plane vortex orders with opposite
polarization vorticity.

errors. ¢, Thecorresponding Fourier spectra with marked vortex modes
(orangearrows)and FE modes (blue arrow). Thecurvesinband care offset
vertically for clarity. FFT, fast Fourier transform. d, Polarization (P} of a
calculated 0.30-THz vortex mode at the equilibrium state (r<0) and the
sinusoidal maximum it = 7/4], withassociated vorticity (colour). e, Lead-cation
displacements (u) andassociated vorticity icolour) att = r/4. Thestructural
distortion isenhanced for better visibility.

Fig. 2/ High-frequency collective modes. a, Schematic of the probed Bragg
peaksintheq,-g. plane of the recipracal space around the 023, 11 3and 004
substrate peaks. FE, ferroelectric a,/a, structure; sat., satellite peak; SL,
superlattice peak; substrate, DS0 peak. b, Normalized change of diffraction
intensityof the Bragz peaks (indicated by the same colour scheme asina)asa
function ofdelay, with f THz excitati overlaid (THz
waveformscaleindicated an the right). The error bars show the standard




