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[1]Stabilizing black-phase formamidinium perovskite formation at room temperature and high
humidity
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HARMSE: Science 26 Mar 2021: Vol. 371, Issue 6536, pp. 1359-1364

fE#: Wei Hui, Lingfeng Chao, Hui Lu, Fei Xia, et al.

FE—1EF B L. Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China.

E A HIE: http://www.njtech.edu.cn/info/1058/2182212.htm

A C8E¥E: https:/science.sciencemag.org/content/371/6536/1359

Abstract: The stabilization of black-phase formamidinium lead iodide ( @ -FAPbI3) perovskite under various

environmental conditions is considered necessary for solar cells. However, challenges remain regarding the
temperature sensitivity of a -FAPbI3 and the requirements for strict humidity control in its processing. Here we
report the synthesis of stable a -FAPbI3, regardless of humidity and temperature, based on a vertically aligned
lead iodide thin film grown from an ionic liquid, methylamine formate. The vertically grown structure has
numerous nanometer-scale ion channels that facilitate the permeation of formamidinium iodide into the lead iodide
thin films for fast and robust transformation to a -FAPbI3. A solar cell with a power-conversion efficiency of
24.1% was achieved. The unencapsulated cells retain 80 and 90% of their initial efficiencies for 500 hours at 85°
C and continuous light stress, respectively.
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[2]Three-dimensional vectorial imaging of surface phonon polaritons
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HWAR{E B Science 26 Mar 2021:Vol. 371, Issue 6536, pp. 1364-1367

fE#: Xiaoyan Li, Georg Haberfehlner, Ulrich Hohenester, Odile Stéphan, et al.

F—VEZEHAL: Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay. France.

S CEEHE: https://science.sciencemag.org/content/371/6536/1364

Abstract: Surface phonon polaritons (SPhPs) are coupled photon-phonon excitations that emerge at the surfaces of
nanostructured materials. Although they strongly influence the optical and thermal behavior of nanomaterials, no technique
has been able to reveal the complete three-dimensional (3D) vectorial picture of their electromagnetic density of states.
Using a highly monochromated electron beam in a scanning transmission electron microscope, we could visualize varying
SPhP signatures from nanoscale MgO cubes as a function of the beam position, energy loss, and tilt angle. The SPhPs’
response was described in terms of eigenmodes and used to tomographically reconstruct the phononic surface
electromagnetic fields of the object. Such 3D information promises insights in nanoscale physical phenomena and is
invaluable to the design and optimization of nanostructures for fascinating new uses.
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[3]Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order
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HAR{EE: Science 26 Mar 2021:Vol. 371, Issue 6536, pp. 1368-1374

fE#: Jun Lu, Yao Xue, Kalil Bernardino, Ning-Ning Zhang, Weverson R. Gomes, et al.

F—1EHHAL: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin
University, Changchun, China.

EAAHSEHRIE: http:/chem.jlu.edu.cn/info/1084/9991 htm

AR https://science.sciencemag.org/content/371/6536/1368

Abstract: Chiral assemblies of plasmonic nanoparticles are known for strong circular dichroism but not for high
optical asymmetry, which is limited by the unfavorable combination of electrical and magnetic field components
compounded by strong scattering. Here, we show that these limitations can be overcome by the long-range organization
of nanoparticles in a manner similar to the liquid crystals and found in helical assemblies of gold nanorods with human
islet amyloid polypeptides. A strong, polarization-dependent spectral shift and the reduced scattering of energy states
with antiparallel orientation of dipoles activated in assembled helices increased optical asymmetry g-factors by a factor
of more than 4600. The liquid crystal-like color variations and the nanorod-accelerated fibrillation enable drug
screening in complex biological media. Improvement of long-range order can also provide structural guidance for the
design of materials with high optical asymmetry.
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[4]Scaling behavior of stiffness and strength of hierarchical network nanomaterials
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R 15 B.:Science 05 Mar 2021:Vol. 371, Issue 6533, pp. 1026-1033

Y& : Shan Shi, Yong Li, Bao-Nam Ngo-Dinh, Jirgen Markmann, Jorg Weissmiiller, et al.

FT—VEHE BN Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, 21502
Geesthacht, Germany.

S EEHE: https://science.sciencemag.org/content/371/6533/1026

Abstract: Structural hierarchy can enhance the mechanical behavior of materials and systems. This is
exemplified by the fracture toughness of nacre or enamel in nature and by human-made architected microscale
network structures. Nanoscale structuring promises further strengthening, yet macroscopic bodies built this way
contain an immense number of struts, calling for scalable preparation schemes. In this work, we demonstrated
macroscopic hierarchical network nanomaterials made by the self-organization processes of dealloying. Their
hierarchical architecture affords enhanced strength and stiffness at a given solid fraction, and it enables reduced
solid fractions by dealloying. Scaling laws for the mechanics and atomistic simulation support the observations.
Because they expose the systematic benefits of hierarchical structuring in nanoscale network structures, our
materials may serve as prototypes for future lightweight structural materials.
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[5]Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode
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HAR{E R Science 12 Mar 2021:Vol. 371, Issue 6534, pp. 1129-1133

fE#: Young-Hoon Kim, Yaxin Zhai, Haipeng Lu, Xin Pan, Chuanxiao Xiao, E. Ashley Gaulding, et al.

HE—VEH LI Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO
80401, USA.

SR https://science.sciencemag.org/content/371/6534/1129

Abstract: In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both
electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly
polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of
an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic
contacts. We used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrate a spin-LED
that operates at room temperature without magnetic fields or ferromagnetic contacts. The CISS layer consists of oriented,
self-assembled small chiral molecules within a layered organic-inorganic metal-halide hybrid semiconductor framework.
The spin-LED achieves +2.6% circularly polarized electroluminescence at room temperature.
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[6]Electric field - tunable superconductivity in alternating-twist magic-angle trilayer graphene
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HAR{E B Science 12 Mar 2021:Vol. 371, Issue 6534, pp. 1133-1138

= Zeyu Hao, A. M. Zimmerman, Patrick Ledwith, Eslam Khalaf, Danial Haie Najafabadi, Kenji Watanabe, et al.

$E—1E& HAI: Department of Physics, Harvard University, Cambridge, MA 02138, USA.

S 4EEE: https://science.sciencemag.org/content/371/6534/1133

Abstract: Engineering moiré superlattices by twisting layers in van der Waals (vdW) heterostructures has uncovered a
wide array of quantum phenomena. We constructed a vdW heterostructure that consists of three graphene layers stacked
with alternating twist angles + 0 . At the average twist angle 0 ~ 1.56° , a theoretically predicted “magic angle” for the
formation of flat electron bands, we observed displacement field - tunable superconductivity with a maximum critical
temperature of 2.1 kelvin. By tuning the doping level and displacement field, we found that superconducting regimes occur
in conjunction with flavor polarization of moiré bands and are bounded by a van Hove singularity (vHS) at high
displacement fields. Our findings display inconsistencies with a weak coupling description, suggesting that the observed

moiré superconductivity has an unconventional nature.
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[1]Macroscopic materials assembled from nanoparticle superlattices
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HARfES: Nature 18 March 2021: Vol 591, pages586 - 591(2021)

{3 : Peter J. Santos, Paul A. Gabrys, Leonardo Z. Zornberg, Margaret S. Lee & Robert J. Macfarlane

F—1{EZ ¥ L. Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, MA, USA

SEERE: https://www.nature.com/articles/s41586-021-03355-z

Abstract: Nanoparticle assembly has been proposed as an ideal means to program the hierarchical organization of
a material by using a selection of nanoscale components to build the entire material from the bottom up. Multiscale
structural control is highly desirable because chemical composition, nanoscale ordering, microstructure and
macroscopic form all affect physical properties. However, the chemical interactions that typically dictate nanoparticle
ordering do not inherently provide any means to manipulate structure at larger length scales. Nanoparticle-based
materials development therefore requires processing strategies to tailor micro- and macrostructure without sacrificing
their self-assembled nanoscale arrangements. Here we demonstrate methods to rapidly assemble gram-scale quantities
of faceted nanoparticle superlattice crystallites that can be further shaped into macroscopic objects in a manner
analogous to the sintering of bulk solids. The key advance of this method is that the chemical interactions that govern
nanoparticle assembly remain active during the subsequent processing steps, which enables the local nanoscale
ordering of the particles to be preserved as the macroscopic materials are formed. The nano- and microstructure of the
bulk solids can be tuned as a function of the size, chemical makeup and crystallographic symmetry of the superlattice
crystallites, and the micro- and macrostructures can be controlled via subsequent processing steps. This work therefore
provides a versatile method to simultaneously control structural organization across the molecular to macroscopic
length scales.
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[2]High-order superlattices by rolling up van der Waals heterostructures
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fE#: Bei Zhao, Zhong Wan, Yuan Liu, Junging Xu, et al.

$F—1EZ B AL: Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha,
China

E A AHSHRIE: http:/cc.hnu.edu.cn/info/1058/8888.htm

AR https://www.nature.com/articles/s41586-021-03338-0

Abstract: Two-dimensional (2D) materials and the associated van der Waals (vdW) heterostructures have
provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching
requirements, through layer-by-layer mechanical restacking or sequential synthesis. Here we report a straightforward
approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a
capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from
the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming
high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure
and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from
2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This study demonstrates a general
approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality
and topology, and defines a rich material platform for both fundamental studies and technological applications.
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[3]Ligand-engineered bandgap stability in mixed-halide perovskite LEDs
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Abstract: Lead halide perovskites are promising semiconductors for light-emitting applications because they
exhibit bright, bandgap-tunable luminescence with high colour purity. Owing to the formation of lower-bandgap
iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet
been realized. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to
suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission
centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show
that a key function of the ligand treatment is to  ‘clean’  the nanocrystal surface through the removal of lead
atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal
surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work
exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the
(nano)crystalline surface and presents a route through which to control the formation and migration of surface
defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on
other optoelectronic applications—such as photovoltaics—for which bandgap stability is required.
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