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[1] Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above Tc

BT Te KTCFHE 34k b To i BR BR 30 N ELHRE SR

HARME B: SCIENCE 29 Oct 2021, Vol 374, Issue 6567, pp. 608-611

{E#: KOEN M. BASTIAANS, DAMIANOS CHATZOPOULOS, JIAN-FENG GE, DOOHEE CHO, WILLEM
O. TROMP, JAN M. VAN RUITENBEEK, ET AL.

B—VEZBAHI: Leiden Institute of Physics, Leiden University, 2333 CALeiden, Netherlands.

LCEEE: https://www.science.org/doi/10.1126/science.abe3987

Abstract:

The idea that preformed Cooper pairs could exist in a superconductor at temperatures higher than its

zero-resistance critical temperature (Tc) has been explored for unconventional, interfacial, and disordered
superconductors, but direct experimental evidence is lacking. We used scanning tunneling noise spectroscopy to
show that preformed Cooper pairs exist up to temperatures much higher than Tc¢ in the disordered superconductor
titanium nitride by observing an enhancement in the shot noise that is equivalent to a change of the effective
charge from one to two electron charges. We further show that the spectroscopic gap fills up rather than closes
with increasing temperature. Our results demonstrate the existence of a state above Tc that, much like an ordinary
metal, has no (pseudo) gap but carries charge through paired electrons.

HEE.

fEm T IR FRE (Te) BIBT, BSEPR O ARSI S EIX 2 NIRRT U SR
T SIS P SR TP AT TIRR, (H BRSO E AN B 1

RS ORI e A 3G 58 OF 28 T RO A — AN BT R LT LT, W S T 4 i Fs

EME TR, R SRR, IR T Te I, TSI R XS T AE

WA — DR, BERIREET &, DG ARSI mAR A & . %8 REMAAAE —FiRE & T Te

HPRAS, E5HESEIEEMHEL, BA B GERT, (HE RO B 7451 B .

A T T, Fig 1 Noise s;emstnp‘_. FiE]
direct probe fo detect paired
Phzsa-coherant : Prefoemed pairs : Normal metal E;ttr;:llin 4 ” ; A ; l
Supercondictor | ! g il
! | t i ]
[} T 5 A | % AT
q i E:ﬁ [ ﬂ‘kb‘ L ; 7k e -
q : t;: : i 52 oY y 1 = i
i [ i l;"‘hu E 2 7
r 1 ! 1 /] 1

Temperature

| L
' |l“"'l“h l;ﬂ’#;“i' bissasasans)
i | ik - Bt
d 4 i 4 i 4 3 - i
Enaigy [mev] Eregy jmel]

EfMMactsss © 19

Fig. 2 Evidence for pairing in Til from scanning poise spectroscapy. (4) i
= 5 Wi} hafwaen the STM o and TiN sample &t 2.3 ¥, with te th

L e o & o ] L et = = )
lime = )



https://www.science.org/doi/10.1126/science.abe3987

[2] Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting
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HAR{E B : SCIENCE 22 Oct 2021, Vol 374, Issue 6566, pp. 454-459

#E#: NIKITA HANIKEL, XIAOKUN PEI, SAUMIL CHHEDAHAO LYU et al.

$E—1EHBAI: Department of Chemistry and Kavli Energy Nanosciencelnstitute, University of California, Berkeley,
CA 94720, USA

L https://www.science.org/doi/10.1126/science.abj0890

Abstract:

Although the positions of water guests in porous crystals can be identified, determination of their filling sequence
remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic
framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density
functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by
additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This
evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the
binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher
water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and
stability.
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[3] A compositional link between rocky exoplanets and their host stars
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HARAS B SCIENCE 15 Oct 2021, Vol 374, Issue 6565, pp. 330-332

fE#: Vardan Adibekyan, Caroline Dorn, Sérgio G. Sousa, Nuno C. Santos, Bertram Bitsch, Garik Israelian,
Christoph Mordasini, etc.

F—EZEHANL: Instituto de Astrofisica e Ciéncias do Espaco, Universidadedo Porto, Centro de Astrofisica d a
Universidade do Porto,4150-762 Porto, Portugal

ENEEEE: https://www.science.org/doi/10.1126/science.abg8794

Abstract:

Stars and planets both form by accreting material from a surrounding disk. Because they grow from the same

material, theory predicts that there should be a relationship between their compositions. In this study, we search for a
compositional link between rocky exoplanets and their host stars. We estimate the iron-mass fraction of rocky
exoplanets from their masses and radii and compare it with the compositions of their host stars, which we assume
reflect the compositions of the protoplanetary disks. We find a correlation (but not a 1:1 relationship) between these
two quantities, with a slope of >4, which we interpret as being attributable to planet formation processes. Super-Earths
and super-Mercuries appear to be distinct populations with differing compositions, implying differences in their
formation processes.
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[4] Electrically tunable Feshbach resonances in twisted bilayer semiconductors
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HAR{E B : SCIENCE 15 Oct 2021, Vol 374, Issue 6565, pp. 336-340

f£#: IDO SCHWARTZ, YUYA SHIMAZAKI, CLEMENS KUHLENKAMP, KENJI WATANABE, TAKASHI
TANIGUCHI, MARTIN KRONER, AND ATAC IMAMOGLU

FE—1EFE BAL: Institute for Quantum Electronics, ETH Ziirich, CH-8093Ziirich, Switzerland.

S HEBE: https://www.science.org/doi/10.1126/science.abj3831
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Abstract:

Moiré superlattices in transition metal dichalcogenide bilayers provide a platform for exploring strong
correlations with optical spectroscopy. Despite the observation of rich Mott-Wigner physics stemming from an
interplay between the periodic potential and Coulomb interactions, the absence of tunnel coupling—induced
hybridization of electronic states has ensured a classical layer degree of freedom. We investigated
a MoSe2 homobilayer structure where interlayer coherent tunneling allows for electric field—controlled manipulation
and measurement of the ground-state hole-layer pseudospin. We observed an electrically tunable two-dimensional
Feshbach resonance in exciton-hole scattering, which allowed us to control the strength of interactions between
excitons and holes located in different layers. Our results may enable the realization of degenerate Bose-Fermi
mixtures with tunable interactions.
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[5] Grain boundary velocity and curvature are not correlated in Ni polycrystals
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HiBRAE B.: SCIENCE 8 Oct 2021, Vol 374, Issue 6564, pp. 189-193

f£3%: ADITI BHATTACHARYA, YU-FENG SHEN, CHRISTOPHER M. HEFFERAN, SHIU FAI LI, JONATHAN
LIND, ROBERT M. SUTER, ET AL.

E—1EH HAL: Department of Materials Science and Engineering, CarnegieMellon University, Pittsburgh, PA 15213,
USA.

S https://www.science.org/doi/10.1126/science.abj3210

Abstract:

Grain boundary velocity has been believed to be correlated to curvature, and this is an important relationship for
modeling how polycrystalline materials coarsen during annealing. We determined the velocities and curvatures of
approximately 52,000 grain boundaries in a nickel polycrystal using three-dimensional orientation maps measured by
high-energy diffraction microscopy before and after annealing at 800°C. Unexpectedly, the grain boundary velocities
and curvatures were uncorrelated. Instead, we found strong correlations between the boundary velocity and the five
macroscopic parameters that specify grain boundary crystallography. The sensitivity of the velocity to grain boundary
crystallography might be the result of defect-mediated grain boundary migration or the anisotropy of the grain
boundary energy. The absence of a correlation between velocity and curvature likely results from the constraints
imposed by the grain boundary network and implies the need for a new model for grain boundary migration.
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[6] Levitodynamics: Levitation and control of microscopic objects in vacuum
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fE#: C. GONZALEZ-BALLESTERO, M. ASPELMEYER, L. NOVOTNY, R. QUIDANT, AND O.
ROMERO-ISART.

HB—VEZBAL: Institute for Theoretical Physics, University of Innsbruck,A-6020 Innsbruck, Austria.

L https://www.science.org/doi/10.1126/science.abg3027

Abstract:

The control of levitated nano- and micro-objects in vacuum—which capitalizes on scientific achievements in the

fields of atomic physics, control theory, and optomechanics—is of considerable interest. The ability to couple the
motion of levitated systems to internal degrees of freedom, as well as to external forces and systems, provides
opportunities for science and technology. Attractive research directions, ranging from fundamental quantum physics to
commercial sensors, have been unlocked by the many recent experimental achievements, including motional
ground-state cooling of an optically levitated nanoparticle. Here we review the status, challenges, and prospects of
levitodynamics, the multidisciplinary research area devoted to understanding, controlling, and using levitated nano-
and micro-objects in vacuum.
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[1] Fault-tolerant control of an error-corrected qubit
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MRS B : Nature volume 598, pages281-286 (2021)

fE#: Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger et al.

F—1EFBAL: Joint Quantum Institute, Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD, USA.

2 CEEEE: https://www.nature.com/articles/s41586-021-03928-y

Abstract:

Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and

stabilizer measurement of a Bacon—Shor logical qubit using 13 trapped ion qubits. When we compare these
fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical
primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement
error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic
states with fidelities that exceed the distillation threshold, demonstrating all of the key single-qubit ingredients required
for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical
primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a
stabilized logical qubit can be achieved.
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[2] Strongly correlated excitonic insulator in atomic double layers
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HARME B: Nature volume 598, pages585-589 (2021)

fE#: Liguo Ma, Phuong X. Nguyen, Zefang Wang, Yongxin Zeng, Kenji Watanabe, Takashi Taniguchi, Allan H.
MacDonald, Kin Fai Mak & Jie Shan

FE—1EFBLI: School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

LCEEHEE: hitps://www.nature.com/articles/s41586-021-03947-9

Abstract:

Excitonic insulators (Els) arise from the formation of bound electron—hole pairs (excitons) in semiconductors and

provide a solid-state platform for quantum many-boson physics. Strong exciton—exciton repulsion is expected to
stabilize condensed superfluid and crystalline phases by suppressing both density and phase fluctuations. Although
spectroscopic signatures of Els have been reported, conclusive evidence for strongly correlated EI states has remained
elusive. Here we demonstrate a strongly correlated two-dimensional (2D) EI ground state formed in transition metal
dichalcogenide (TMD) semiconductor double layers. A quasi-equilibrium spatially indirect exciton fluid is created
when the bias voltage applied between the two electrically isolated TMD layers is tuned to a range that populates
bound electron—hole pairs, but not free electrons or holes. Capacitance measurements show that the fluid is
exciton-compressible but charge-incompressible—direct thermodynamic evidence of the EI. The fluid is also strongly
correlated with a dimensionless exciton coupling constant exceeding 10. We construct an exciton phase diagram that
reveals both the Mott transition and interaction-stabilized quasi-condensation. Our experiment paves the path for
realizing exotic quantum phases of excitons, as well as multi-terminal exciton circuitry for applications.
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[3] Observation of fractional edge excitations in nanographene spin chains
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HAR{S B : Nature volume 598, pages287-292 (2021)

fE%#: Shantanu Mishra, Gongalo Catarina, Fupeng Wu, Ricardo Ortiz, David Jacob et al.

B—VEZBAI: Empa—Swiss Federal Laboratories for Materials Science and Technology, Diibendorf,
Switzerland.

A CEEEE: https://www.nature.com/articles/s41586-021-03842-3

Abstract:

Here, we use on-surface synthesis to fabricate one-dimensional spin chains that contain the S=1 polycyclic

aromatic hydrocarbon triangulene as the building block. Using scanning tunnelling microscopy and spectroscopy
at 4.5 K, we probe length-dependent magnetic excitations at the atomic scale in both open-ended and cyclic spin
chains, and directly observe gapped spin excitations and fractional edge states therein. Exact diagonalization
calculations provide conclusive evidence that the spin chains are described by the S =1 bilinear-biquadratic
Hamiltonian in the Haldane symmetry-protected topological phase. Our results open a bottom-up approach to
study strongly correlated phases in purely organic materials, with the potential for the realization of
measurement-based quantum computation.
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highlighted. d, e, Bond-resolved STM images of TSCs with cis (d) and trans acquired. The di/dVspectrain the panels are offset vertically for visual clarity.
(e)intertriangulene bonding configurations (open feedback parameters: Openfeedback parameters for the difdVspectra: V=-100mV, /= 1.4 nA;root
V=-5mV,/=50pA; Ah=-0.7 A). Ahdenotes the offsetapplied tothe meansquared modulation voltage V... =1mV.

tip-sample distance with respect to the STM setpointabove the TSCs.


https://www.nature.com/articles/s41586-021-03842-3

[4] Fine-regolith production on asteroids controlled by rock porosity
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Abstract:

Spacecraft missions have observed regolith blankets of unconsolidated subcentimetre particles on stony
asteroids. Telescopic data have suggested the presence of regolith blankets also on carbonaceous asteroids, including
(101955) Bennu and (162173) Ryugu. However, despite observations of processes that are capable of comminuting
boulders into unconsolidated materials, such as meteoroid bombardment and thermal cracking, Bennu and Ryugu
lack extensive areas covered in subcentimetre particles. Here we report an inverse correlation between the local
abundance of subcentimetre particles and the porosity of rocks on Bennu. We interpret this finding to mean that
accumulation of unconsolidated subcentimetre particles is frustrated where the rocks are highly porous, which
appears to be most of the surface. The highly porous rocks are compressed rather than fragmented by meteoroid
impacts, consistent with laboratory experiments, and thermal cracking proceeds more slowly than in denser rocks.
We infer that regolith blankets are uncommon on carbonaceous asteroids, which are the most numerous type of
asteroid. By contrast, these terrains should be common on stony asteroids, which have less porous rocks and are the
second-most populous group by composition. The higher porosity of carbonaceous asteroid materials may have aided
in their compaction and cementation to form breccias, which dominate the carbonaceous chondrite meteorites.
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between fine regolith and rocks (Methods). The plotted data have agoodness respectively. About 70% of the rocks on Bennu are as porous as those on Ryugu,
of fitof xf < 3{Methods), whichissatisfactory for thesetypes of observation. whereas only about 5% of Bennu's rocks have porosity similar to that of

The errorbars correspond to one standard deviation (Supplementary Table 1, Itokawa’s rocks.

Methods). computed from about 670 samples on average.
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[5] Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene
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Abstract:

The quantum anomalous Hall (QAH) effect—a macroscopic manifestation of chiral band topology at zero
magnetic field—has been experimentally realized only by the magnetic doping of topological insulators and the
delicate design of moir¢ heterostructures. However, the seemingly simple bilayer graphene without magnetic doping
or moiré¢ engineering has long been predicted to host competing ordered states with QAH effects. Here we explore
states in bilayer graphene with a conductance of 2 e2h—1 (where e is the electronic charge and h is Planck’s constant)
that not only survive down to anomalously small magnetic fields and up to temperatures of five kelvin but also
exhibit magnetic hysteresis. Together, the experimental signatures provide compelling evidence for
orbital-magnetism-driven QAH behaviour that is tunable via electric and magnetic fields as well as carrier sign.
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Abstract:

Effects connected with the mathematical theory of knots emerge in many areas of science, from

physics to biology. Recent theoretical work discovered that the braid group characterizes the topology of
non-Hermitian periodic systems, where the complex band energies can braid in momentum space.
However, such braids of complex-energy bands have not been realized or controlled experimentally. Here,
we introduce a tight-binding lattice model that can achieve arbitrary elements in the braid group of two
strands. We experimentally demonstrate such topological complex-energy braiding of non-Hermitian bands
in a synthetic dimension6,7. Our experiments utilize frequency modes in two coupled ring resonators, one
of which undergoes simultaneous phase and amplitude modulation. We observe a wide variety of two-band
braiding structures that constitute representative instances of links and knots, including the unlink, the
unknot, the Hopf link and the trefoil. We also show that the handedness of braids can be changed. Our
results provide a direct demonstration of the braid-group characterization of non-Hermitian topology and
open a pathway for designing and realizing topologically robust phases in open classical and quantum
systems.
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